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ABSTRACT

This investigation concerns the determination of the distributions of

electromagnetic field in long, narrow, rectangular slots in a conducting

plane illuminated by a normally incident, uniform plane wave. Measured

aperture distributions in slots from three to four wavelengths long are

found to closely approximate distributions calculated by use of the reaction

concept

.





1. INTRODUCTION

The advancement of microwave techniques has stimulated interest in

the diffraction of electromagnetic fields caused by apertures in infinite

screens. The aperture field is of interest since the fields everywhere

can be expressed in terms of the field in the aperture. Levine and

Schwinger have approximated the fields diffracted by an aperture by using

2 3
variational principles. Andrews and others have been concerned with

diffraction at short distances caused by circular apertures in an infinite

screen. In a set of unpublished notes, V„H. Rumsey indicates how the

reaction concept may be used to approximately calculate the fields in the

aperture In his notes Professor Rumsey considers the example of a long,

narrow, rectangular slot in an infinite screen when the screen is illuminated

by a normally incident, uniform plane wave.

This investigation concerns the actual, approximate calculation of the

aperture fields in such a slot as Rumsey considers by use of the reaction

concept. Since the calculations indicate peculiar humps in the magnitude of

electric field as the test source is moved along the slot, an experimental

verification is also considered here.

1. See numbered reference in the bibliography. All such numbers throughout
this manuscript refer to numbers in the bibliography.





2. CALCULATION OF APERTURE DISTRIBUTIONS

4
A general method for the application of the reaction concept to an

approximate calculation of the field distribution in an aperture has been

developed in a set of unpublished notes by Prof. V.H. Rumsey. In these

notes this general method is applied to the calculation of the field

distribution in a long, narrow slot in an infinite, conducting plane

excited by a normally incident, uniform plane wave. The source and slot

arrangement are shown in Fig. 1.

g > source "g 1

FIGURE 1 SOURCE ARRANGEMENT FOR CALCULATION OF THE FIELD IN A LONG,
NARROW SLOT
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In the absence of the conducting plane the source "g" generates a

uniform plane wave normal to the x-y plane with its electric field in

the x direction. The slot width W is assumed small enough that the

electric field in the slot is entirely in the x direction and does not

vary with x. The source "h" is a test source located at an arbitrary

point, y , along the slot. This test source consists of a unit current
P

source connected to an infinitesimal dipole which is parallel to the

x-axis. With this source arrangement the reaction* between sources "g"

and "h" is equal to the x component of electric field at y due to the

source "g"

.

A direct evaluation of <g,h> is not possible; however, the reaction

concept provides a means of obtaining an approximate value for <g h>.

Let the source "a" represent an assumed distribution of magnetic currents

over the surface of the slot which produces approximately the same fields

in the slot as are produced by source "g"; let the source "b" represent an

assumed distribution of magnetic currents over the surface of the slot

which produces approximately the same fields in the slot as are produced

gives a value for <g,h> which is stationary for variations of the assumed

sources "a" and "b" about their correct values.

The assumptions that the tangential electric field in

*Tne reaction between two sources "g' and "h" is defined as

<S,h> =SSSY [J< h) ' d£<S> " H(h) • dK(g)]

where E(h) and H(h) are the electric and magnetic fields generated by source
"h" , dj(g) and dK(g) are the volume distributions of electric and magnetic
current of the source "g" and the volume V contains source "h"

The reciprocity theorem gives <g,h> = <h,g> for isotropic media, pro-
vided sources "g" and "h" are contained in a finite volume.
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the slot is in the x-direction and that source "g" is a uniform plane wave

with E (g) = = E (g), H (g) = 1 gives for <b,g>

L ^W

^-» o ^o
<b,g> -2

| \ E
x
(b) dx dy (2)

where E (b) is the electric field along the slot due to the assumed source

"b". Thus E (b) is an assumed value for the electric field produced in the

slot by a unit current source located at y . A reasonable assumption for

E (b) is to assume it proportional to the voltage produced along a trans-

mission line of length L excited by a unit current source at y and shorted

at y = and y = L. This assumption gives

sin(3(y - L) sin(3 y
E (b) ~ 2 o S

y 5 y

p sin PL
P

(3)

sinp y sin(3 (y-L) '

y - y - l

P sin (3L
y

2 2
where (3 = w jjl € . Substitution of E (b) from Eq. 3 into Eq. 2 gives

<b,g> ~ cos (3(y - |) - cos *~
. (4)

Since <b,g> and <a,h> should both represent the voltage in the slot

due to source "g"
, it is consistent to assume source "a" so that

<a,h> = <b,g>. This condition forces source "a" to be such that

E (a) ~ <b,g>, where E (a) is the field produced in the slot by source "a",

These assumptions for sources "a" and "b" give, for <a,b>,

pL L pW pW 8
2 -jplri

<a,b> ~
g(y> f (y'> [P + —g]

| r |

dx dx' dy dy' (5)
^o \J o Jo ^o By





where

f(y) = E
x
(a)

g(y) = E
x
(b)

2
/ • <*

2
i ^ 2

r = (x-x ) + (y-y')

While Eq . 5 for <a,b> may be simplified, no method could be found to

evaluate it without using, in part, numerical methods. The expression was

first reduced to a double integral, and the final integrations were made

using the digital computer, ILLIAC. For all numerical calculations a

slot width of (3W = 0.2 (W = 0.0319X) was used. This slot width was chosen

as it allowed a better than 1% accuracy in the numerical calculations and

still required a reasonable computation time. Approximate field distri-

butions were calculated for slot lengths from (3W = 6 (L = 0.955X.) to

(3W = 75 (L= 11.95\).

In Figs. 2 through 6 curves are plotted showing !<g,h>l as calculated

from Eq. 1 and l<b,g>J as calculated from Eq. 4. It will be noted that for

the 0.955X slot the assumed distribution |<b,g>l and the next approximation

from the stationary formula of Eq. 1 show very good agreement. Therefore,

for this slot length it seems likely that the assumed distribution is a

good one. For the longer slots the curves l<g,h>l and l<b,g>l have the

same form where the field is large, but they do not compare where the field

is small. It will be noted that the assumed field along the slot is zero

at several points and that l<g,h> I from Eq . 1 will be zero at the same points.

Thus, it is not expected that l<g,h>l should accurately represent the field

in the slot near points where the field is a minumum.
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3. EXPERIMENTAL DETERMINATION OF APERTURE DISTRIBUTIONS

The measurement of the field distribution in a long, narrow,

rectangular slot presents, among others, the problems of where and how

to probe the field, where to put associated measuring apparatus, how to

achieve a uniform plane wave, and how to approximate an infinitely thin,

infinitely extending, conducting plane.

Measurement of the aperture distribution is accomplished here by using

the experimental setup of Fig. 7. An image plane is place perpendicular to

the plane of the slot and bisecting the narrow dimension of the slot. The

effect of such a plane is to reproduce below its surface the image of

what is on top of the plane in the same manner as the image of an object

is reproduced behind a mirror . The advantage of this system is that the

space below the image plane may now be utilized to house the probe and

associated measuring apparatus, thus shielding it from the field to be

measured. The image plane, as well as the aperture plane, must be

terminated in such a way as to approximate the system of infinite

dimensions. Edge effects created by these terminations must be minimized.

An approximation of a uniform plane wave is launched along the image

plane by a horn located at one end of the plane. A sliding section of

the image plane is used beneath the aperture. This section contains

a small hole through which the measuring probe penetrates. The probe can

then be located at any point in the aperture. It is not permissible to

move this probe in another slot, cut in the image plane, because this

second slot would disturb the currents on the image plane caused by the

plane wave.
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FIGURE 7 IMAGE AND APERTURE PLANES

Since a frequency of 9600 mc or a wavelength of 3.125 cm is used

throughout this investigation, the dimensions shown in Fig. 7 result

in an aperture plane of 24. 4\ by 12\ and an image plane of 74\ by

24. 4\. The distance from the horn to the aperture is 53. 4\. The slots

are 0.040X high, resulting in a height of 0.080X in the equivalent free

space case. The material from which the slots are constructed is 0.032 in.

or 0.026X thick copper. Such a thickness is necessary to maintain a

rigid aperture plane under the strain of the sliding section. Since

good electrical contact between the aperture plane and the image plane

must be maintained, at least at the ends of the slots, the aperture plane
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is tapered slightly at the bottom edge in such a way that the lowest

portion of the aperture plane is at the edges of slot; thus contact

at these points is insured. To facilitate construction and installation

of the slots the aperture plane is fabricated in two sections; the

upper section is permanently mounted, and the lower section consists

of a 3 in. strip, in which the slot is cut. These strips may be easily

constructed to the desired slot length and then rigidly fastened to the

upper part for measurement of the distribution.

Two different probes were used for mechanical reasons, one for

amplitude measurements and one for phase measurements. The hole in the

sliding section is 0.085 in. in diameter for the amplitude probe, and it

is reduced to 0.058 in. for the phase probe by means of a bushing. The

diameter of the amplitude probe measures 0.032 in. and the diameter of

the phase probe is 0.021 in.

Suppression of the edge effect, caused by the finite size of the

image plane, is achieved by installing aluminum rolls of nine inch

radius at the edges of the image plane. These rolls give a gradual

transition from the metallic plane to the surrounding free space. The

edges of the aperture plane are terminated by pieces of cardboard

saturated with Aquadag; thus the radiation at these edges is absorbed.

Reflections from within the laboratory are reduced by means of panels

of absorbing material placed in front of the reflecting objects.

The arrangement of equipment for measuring the amplitude distribution

is shown in Fig. 8. The signal at the point where the probe is located

is demodulated by a calibrated crystal, and the strength is indicated

on the standing wave amplifier.
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FIGURE 8 EQUIPMENT FOR MEASURING AMPLITUDE DISTRIBUTION
(Not to Scale)

Phase measurements are performed with equipment arranged as in

Fig. 9. A small portion of the klystron power is tapped off to provide

a reference signal. The probe is excited by the field in the slot. The

probe in turn excites the waveguide through a slotted waveguide section.

This signal is then mixed with the reference signal in a directional

coupler and detected by a crystal and standing wave amplifier. The

amplitude and phase of the reference signal can be changed by means of

adjusting the calibrated phase shifter and calibrated attenuator. When

the reference signal and the signal from the slot are of the same

magnitude but 180 out of phase at the detector, a null is read on the
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standing wave amplifier. The change of the reference signal necessary

to bring about this null indicates the phase at the probe position in the

slot. Amplitude is not measured in this way because with a rigid probe

running from the slot to the slotted section it is too difficult to

maintain constant probe penetrations as probe position is varied. These

varying penetrations change the amplitude readings considerably but have

very little effect on phase determination.

Patterns of the incident wave were taken without the aperture plane

present. To shield the probe from the rear edge, or the edge of the image

plane without the horn, it was necessary to mount a vertical plane 1/4X

behind the probe. Since the angle of incidence was, for practical purposes,

normal, the patterns obtained were those of the wave propagated by the

horn on the image plane in the absence of the aperture plane. The primary

amplitude pattern is shown in Fig. 10. It is seen that this varies about

1/2 db over a range extending for two wavelengths to each side of the center.

The primary phase pattern, shown in Fig. 11, indicates that the phase varies

by less than 13 over the same range. Since this range approximates a

plane wave, it is within this range that the slots are placed, and

measurements are carried out. The primary patterns shown in Figs. 10 and

11 are typical, and repeated patterns have the same characteristics.

Amplitude patterns are within 0.1 db of each other, and phase patterns

have a maximum deviation of 6 between various sets of data but an average

deviation of only about 1 .

Amplitude distributions for various slot heights were taken, and, by

comparing Figs. 12 and 20, it is seen that the variation in height causes

little variation in the amplitude pattern. Figures 13 and 20 show
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the patterns for probe depths of 0,020 in, and 0.030 in. for the same

aperture. A study of these patterns shows that only small variations

are experienced by changes in probe penetration.
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4. PRESENTATION OF EXPERIMENTAL RESULTS AND COMPARISON WITH THEORETICAL
RESULTS

In order to show how the field distribution varies as the length of

the aperture is increased, the experimental amplitude and phase patterns

of slots of three to four wavelengths, of height 0.040X., increasing in

length by l/8\ steps, are shown in Figs. 14 through 22. For mechanical

reasons the height, W = 0.040X, was about the smallest which could be

measured with a suitable degree of accuracy in this frequency range. It

is felt that a decrease in W would not change the field distribution

appreciably.

Since comparison of theoretical and experimental curves is desirable,

the theoretical amplitude and phase distributions for slots of height

W = 0.031X and of corresponding length are also indicated on most of

the same graphs.

Because the absolute phase at a certain probe position in the

aperture with respect to that of the plane wave would be difficult to

determine experimentally, the phase at the center of the slot is always

chosen to read . In order to compare the theoretical and experimental

phase patterns, the theoretical patterns were also shifted in such a way

as to read phase shift in the center of the aperture. It is known,

however, that the absolute phase at the ends of the slot must be zero.

Establishment of an experimental phase reference at these points is

impossible, however, because the field is zero.

Study of the experimental amplitude patterns shows a reluctance to
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decrease to zero amplitude. Since the theoretical curves are known to

be least accurate in the regions of very low amplitude, the field might

very well not be zero except at the ends of the slot, A number of

experimental errors, however, can be used to explain some of this

reluctance, The probe is of finite size and cannot, therefore, measure

only over the infinitesimal distance where the minimum occurs. Although

edge effects are suppressed, they probably do have an effect

in the regions of lower amplitude, thus disturbing the pattern. The noise

figures of equipment also limit the minimum measurable signal.

The experimental amplitude patterns are seen to closely resemble the

theoretical amplitude patterns of a slightly longer slot. This lag might

be explained, at least partially, by the greater height of the experimental

aperture, similar to the effect of the increasing diameter of a

5
dipole antenna causing a shorter effective length.

The theoretical phase pattern of the 3.875X slot in Fig. 21 is

drawn with a number of discontinuities. The reason for the discontinuities

is that the phase changes rapidly between successive calculated points.

Thus some of the calculated points are not shown on lines because it is

ambiguous as to whether these points lead or lag adjoining segments of

the curve. It should also be mentioned that because of the low amplitude

level the theoretical results are known to be least accurate in these

regions. The indicated method of drawing the phase distribution seems

to be the most continuous, although arguments can be exhibited which

would make other methods of presenting the relationship between various

segments of the curve just as plausible. It is seen by comparing the

theoretical phase patterns of Figs. 20 and 22 that between an aperture
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of 3.75X and one of 4.00X the trends in the phase pattern seem continuous

except for a change in sign. This indicates a rapid shift and thus might

explain the ambiguity in the phase pattern of Fig. 21. If a dipole of

finite thickness is again used as an analogy, a similar rapid shift

in the sign of the input reactance takes place at approximately this same

length, which corresponds to a resonance of the dipole.

Since experimental amplitude patterns correspond to slightly longer

theoretical patterns, one might expect to find the same trend in the

phase patterns. The fact that the discontinuities of the experimental

phase pattern in Fig. 19 are similar to those of Fig. 21 help verify the

expectation. The low signal levels and finite probe size make accurate

phase measurement impossible in the regions of rapidly changing phase of

the 3.625X slot.

Because the apparent phase shift occurs at about 3.625X for the

experimental case and at about 3.875X. for the theoretical case, it is

expected that experimental and theoretical phase patterns of a 3.75X

slot follow opposite trends. An inspection of Fig. 20 indicates that this

is true.
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5. CONCLUSIONS

This work has shown that the reaction concept is valuable in calculating

approximately the field distribution in long, narrow, rectangular slots. The

calculated distributions closely approximate the measured distributions where

the amplitude of the field is large. At the places where the field ampli-

tude is small, both the theoretical and experimental values are the least

accurate and close agreement can not be expected at these points.
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